|
|||
Šī rīka saturs šobrīd ir novecojies un var neatbilst korpusa jaunākajai versijai! EvEp1615, 121. lpp.
1: the Auwes §taiga tham peetcz / Ai§to the paßi§th winge
2: Balxne. Beth wenam Swe§§cham nhe §taiga the 3: peetcz / beth §krey no tho / ai§to the nhe paßi§th to Swe§- 4: §che balxne. Scho lydtczibe ßatcy JE§us vß thems / 5: Beth the nhe ßappratte / Khas thas by / ka thas vß 6: thems treßey. 7: Thad ßatcy JE§us atkal 8: vß tems / Patte§e / patte§e / 9: es ßacke yums / Es e§§me 10: ta Durwis py thems Au- 11: wems. Wü§§e kattre prex- 12: kan man naku§§che gir / te 13: gir Saggle vnde Szlep- 14: kouwe buewu§§che. Beth 15: the Auwes nhe gir thos 16: klou§§i§che. Es e§§me ta Durwis / kad kas czour man 17: e edth / tas tope §weetcz. Vnde tas e e§e vnde ys e §e / 18: vnde gannibe attras. Wens Sagglis nhe nake czite 19: peetcz / ka wen / ka thas ßooge / noßnoudtcze vnde no- 20: maetcze. Es e§§me nätczys / Ka thems to cziwibe pül- 21: nibe vnde to gaußibe dabbuut buus. 22: Die Epi§tel am tage der heiligen 23: Dreyfaltigkeit / Johan. 3. Cap. 24: O Kada wena czillibe thäs Bagatibes / lidtcz 25: thäs Guddribes / vnd Dewe atßi§chennes. 26: Ka wü§tim neeaptweryamme gir winge ßo- |
|||
© LU Matemātikas un informātikas institūta Mākslīgā intelekta laboratorija |